7 hằng đẳng thức đáng nhớ

Những hằng đẳng thức xứng đáng nhớ vững chắc thân thuộc gì với chúng ta . Hôm ni Kiến tiếp tục trình bày kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhì bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhì lập phương và ở đầu cuối là hiệu nhì lập phương. Các các bạn nằm trong xem thêm nhé.

Bạn đang xem: 7 hằng đẳng thức đáng nhớ

1. Bình phương của một tổng

Với A, B là những biểu thức tùy ý, tao có: ( A + B )2 = A2 + 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.
b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta đem x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là những biểu thức tùy ý, tao có: ( A - B )2 = A2 - 2AB + B2.

hang-dang-thuc-dang-nho-01

3. Hiệu nhì bình phương

Với A, B là những biểu thức tùy ý, tao có:  A2 - B2 = ( A - B )( A + B ).

hang-dang-thuc-dang-nho-02

4. Lập phương của một tổng

Với A, B là những biểu thức tùy ý, tao có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.

hang-dang-thuc-dang-nho-03

5. Lập phương của một hiệu.

Với A, B là những biểu thức tùy ý, tao có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.

Ví dụ :

a) Tính ( 2x - 1 )3.
b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3 

= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13

 = 8x3 - 12x2 + 6x - 1

b) Ta đem : x3- 3x2y + 3xy2- y3 

= ( x )3 - 3.x2.hắn + 3.x. y2 - y3 

= ( x - hắn )3

6. Tổng nhì lập phương

Với A, B là những biểu thức tùy ý, tao có: A3 + B3 = ( A + B )( A2 - AB + B2 ).

Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu thốn của hiệu A - B.

Ví dụ:

a) Tính 33+ 43.
b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.

Xem thêm: cập nhật phần mềm ios

7. Hiệu nhì lập phương

Với A, B là những biểu thức tùy ý, tao có: A3 - B3 = ( A - B )( A2 + AB + B2 ).

Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu thốn của tổng A + B.

Ví dụ:

a) Tính 63- 43.
b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhì lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.
b) Ta đem : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.

B. Bài luyện tự động luyện về hằng đẳng thức

 Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.

Hướng dẫn:

a) sít dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.

( a - b )( a + b ) = a2 - b2.

Khi tê liệt tao đem ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0

⇔ x3 - x3 + 4x - 27 = 0

⇔ 4x - 27 = 0 

Vậy x= .

b) sít dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2 - b3

( a + b )3 = a3 + 3a2b + 3ab2 + b3

( a - b )2 = a2 - 2ab + b2

Khi tê liệt tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.

⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10

⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10

⇔ 12x = - 6 

Vậy x=

Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

  1. 2x2+ 4xy     B. – 8y2+ 4xy
  2. - 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]

A = x2 – 4y2 – x2 + 4xy - 4y22

Xem thêm: thực trạng bạo lực học đường

A = -8y2 + 4xy

  • Hãy lưu giữ nó nhé

hang-dang-thuc-dang-nho-04

Những hằng đẳng thức xứng đáng nhớ bên trên đặc biệt cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy nghiên cứu và phân tích và ghi lưu giữ nó nhé. Những đẳng thức tê liệt canh ty tất cả chúng ta xử lý những việc dễ dàng và khó khăn một cơ hội đơn giản và dễ dàng, chúng ta nên thực hiện đi làm việc lại nhằm bạn dạng đằm thắm hoàn toàn có thể áp dụng chất lượng rộng lớn. Chúc chúng ta thành công xuất sắc và cần mẫn bên trên tuyến phố học hành. Hẹn chúng ta ở những bài bác tiếp theo