công thức tổng cấp số nhân

Cấp số nhân là phần kỹ năng và kiến thức cần thiết nhập công tác toán trung học phổ thông. Trong số đó, những công thức cung cấp số nhân khá phức tạp. Vì vậy, nhằm thực hiện bài bác tập dượt thì những em cần thiết ghi ghi nhớ và biết phương pháp áp dụng công thức. Cùng VUIHOC điểm lại những công thức và bài bác tập dượt cung cấp số nhân qua quýt nội dung bài viết tại đây.

1. Cấp số nhân là gì?

Cấp số nhân là 1 trong những sản phẩm số (hữu hạn hoặc vô hạn) thoả mãn ĐK Tính từ lúc số hạng loại nhị, từng số hạng đều là tích của số hạng đứng ngay lập tức trước nó với một số trong những ko thay đổi (hằng số này được gọi là công bội q của cung cấp số nhân). Có nghĩa là:

Bạn đang xem: công thức tổng cấp số nhân

u_{n} là cung cấp số nhân với \Leftrightarrow \forall n \geq 2, u_{n-1} với n \in N^{\ast }

Ví dụ: Dãy số (u_{n}), với u_{n}=3^{n} là 1 trong những cung cấp số nhân với số hạng đầu u_{1}=3 và công bội q = 3.

2. Công bội q

q là công bội của cung cấp số nhân un có 

Công bội q=\frac{u_{n+1}}{u_{n}}

Ví dụ 1: Cho cung cấp số nhân u_{1}=3,u_{2}=9. Tính công bội q

Ta có: 

q=\frac{u_{2}}{u_{1}}=\frac{9}{3}=3

Ví dụ 2: Cho cung cấp số nhân u_{3}=8,u_{4}=16 . Tính công bội q

Ta có: 

q=\frac{u_{4}}{u_{3}}=\frac{16}{8}=2

3. Tính hóa học cung cấp số nhân

  • $(u_{n})$ là 1 trong những cung cấp số nhân thì kể từ số hạng loại nhị, bình phương của từng số hạng (trừ số hạng cuối so với cung cấp số nhân hữu hạn) tiếp tục vị tích của số đứng trước và số đứng sau nó.

\Leftrightarrow (u_{k})^{2}=u_{k-1}.u_{k+1}

  • Nếu một cung cấp số nhân un sở hữu số hạng đầu u1 và công bội q thì số hạng tổng quát tháo un sẽ tiến hành tính vị công thức:

u_{n}=u_{1}.q^{n-1}

Ví dụ : Cho cung cấp số nhân $(u_{n})$ với công bội q > 0. 

Biết u1 = 1; u3 =3. Hãy tìm hiểu u4

Lời giải: 

Ta có: u2= u. u= 3

          u3= u. u4

Từ (1) bởi u2  > 0 ( vì thế u1=1 > 0 và q > 0)

\Rightarrow u_{4}=\frac{{u_{3}}^{2}}{u_{2}}

  • Khi q = 0 thì sản phẩm sở hữu dạng u1; 0;0…;0;… và Sn=u1 

  • Khi q = 1 thì sản phẩm sở hữu dạng u1;u1;u1;...;u1;... và Sn=nu1.

  • Khi u= 0 thì với từng q, cung cấp số nhân sở hữu dạng 0; 0; 0;…; 0;… và Sn=u1.

Đăng ký ngay lập tức nhằm được trao đầy đủ cỗ kỹ năng và kiến thức về cung cấp số nhân

4. Tổng ăn ý những công thức tính cung cấp số nhân cơ bản

4.1. Dạng 1: Nhận biết CSN

Phương pháp:

  • Tính q=\frac{u_{n+1}}{u_{n}} \forall n \geq 1

  • Kết luận: 

  • Nếu q là ko thay đổi thì sản phẩm un là cung cấp số nhân

  • Nếu q thay cho thay đổi thì sản phẩm un ko là cung cấp số nhân

Ví dụ minh họa

Ví dụ 1: Một cung cấp số nhân sở hữu số hạng loại nhất là 2 và công bội là 2. Viết 6 số hạng trước tiên.

Lời giải: 

Ta sở hữu 6 số hạng trước tiên là: 2, 4, 8, 16, 32, 64

Ví dụ 2 : Cấp số nhân Un sở hữu số hạng loại nhị là 10 và số hạng loại năm là 1250.

  1. Tìm số hạng loại nhất

  2. Viết 5 số hạng đầu tiên

Lời giải:

  1. Đặt r là công bội của cung cấp số nhân.

 Ta có: r(5-2) = r3 hoặc r3 = 1250 : 10 = 125 = 53. Từ cơ r = 5. 

\Rightarrow u1=10=5=2. 

Số hạng loại nhất là 2 

  1. 2, 10, 50, 1250, 6250

Ví dụ 3: Bài mang đến cung cấp số nhân Un thỏa mãn: u_{n}=3^{\frac{n}{2}+1}. Dãy số Un bên trên là cung cấp số nhân đích hoặc sai? 

Lời giải: 

Ta có: \frac{u_{n}+1}{u_{n}}=\frac{3^{\frac{n+1}{2}+1}}{3^{\frac{n}{2}+1}}=\sqrt3=const không tùy theo n. Vậy sản phẩm số (Un) là 1 trong những cung cấp số nhân với số hạng đầu u_{1}=3\sqrt{3} và công bội là q=\sqrt3

4.2. Dạng 2: Tìm công bội của cung cấp số nhân

Phương pháp: Sử dụng những đặc thù của CSN, đổi khác nhằm tính công bội của CSN.

Ví dụ 1: Cho cung cấp số nhân Un sở hữu U1 = 2, U2 = 4. Tính công bội q.

Từ công thức tớ có: q=\frac{U_{2}}{U_{1}}=\frac{4}{2}=2

Ví dụ 2: Cho cung cấp số nhân Un sở hữu U1 = 3, U2 = -6. Tính công bội q.

Lời giải: 

Từ công thức tớ có: 

q=\frac{U_{2}}{U_{1}}=\frac{-6}{3}=-2

Ví dụ 3: Đề mang đến tía số x,y,z lập trở nên một cung cấp số nhân và tía số x, 2y, 3z lập trở nên một cung cấp số nằm trong. Tìm công bội q.

Lời giải: 

Đặt q là công bội của cung cấp số nhân trên

Các số x, 2y, 3z lập trở nên một cung cấp số nằm trong \Rightarrow x+3z=4y

Giải câu hỏi công thức cung cấp số nhân

4.3. Dạng 3: Tìm số hạng của cung cấp số nhân

Phương pháp:

Để tìm hiểu số hạng của cung cấp số nhân tớ dùng công thức tính số hạng tổng quát tháo Un = U1.qn-1 , n ≥ 2.

Ví dụ 1: Tìm u1 và q  của cung cấp số nhân biết: 

\left\{\begin{matrix} u_{4} - u_{2} = 72\\ u_{5} - u_{3} = 144 \end{matrix}\right.

Lời giải: 

Ta trở thành đổi: 

\left\{\begin{matrix} u_{1}q^{3} - u_{1}q = 72\\ u_{1}q^{4} - u_{1}q^{2} = 144 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} u_{1}q(q^{2} - 1) = 72\\ u_{1}q^{2}(q^{2} - 1) = 144 \end{matrix}\right.

\Rightarrow q = \frac{144}{72} = 2 \Rightarrow u_{1} = 12

Vậy cung cấp số nhân (un) sở hữu u1 = 12 và q = 2

Ví dụ 2: Bài mang đến cung cấp số nhân (un) với u= 8 , u= 32. Số hạng loại 10 của cung cấp số nhân cơ là? 

Lời giải: 

Gọi q là công bội của cung cấp số nhân (un), tớ sở hữu q^{2}=\frac{u_{5}}{u_{3}}=4 \Rightarrow q = \pm 2

Với q = 2, tớ sở hữu u10 = u. q= 8 . 2= 1024

Với q = -2, tớ sở hữu u10 = u. q7= 8 . (-2)= -1024

Ví dụ 3: Cho cung cấp số nhân (un), hiểu được số hạng trước tiên u= 3, công bội là 2. Hãy tìm hiểu số hạng loại 5

Lời giải: 

Áp dụng công thức tớ sở hữu : u= u. qn–1

\Leftrightarrow u= u. q=3 . 2= 48

4.4. Dạng 4: Tính tổng cung cấp số nhân của n số hạng trước tiên nhập dãy

Ta dùng công thức:

Công thức tính tổng CSN của n số hạng trước tiên nhập sản phẩm - công thức cung cấp số nhân

Ví dụ 1: Tính tổng cung cấp số nhân:

S = 2 + 6 + 18 + 13122

Lời giải:

(un) sở hữu u1=2 và q = 3. 

13122 = u_{n} = u_{n}q^{n-1} = 2.3^{n-1} \Leftrightarrow n=9 \Rightarrow S=S_{9}=u_{1}\frac{q_{0}-1}{q-1}

Ví dụ 2: Bài mang đến cung cấp số nhân (un) với

(un): \left\{\begin{matrix} u_{3} = 243u_{8}\\ u_{4} = \frac{2}{27} \end{matrix}\right.

  1. 5 số hạng đầu của cung cấp số nhân bên trên là gì? 

  2. 10 số hạng đầu của cung cấp số nhân (un) bên trên sở hữu tổng là bao nhiêu? 

Lời giải: 

Giải bài bác tập dượt vận dụng công thức cung cấp số nhân

Ví dụ 3: Cho cung cấp số nhân Un thỏa mãn: u_{n}=3^{\frac{n}{2}+1}

  1. Dãy số là cung cấp số nhân là đích hoặc sai?

  2. Tính S = u+ u+ u6... + u20

Lời giải: 

  1. Ta có: \frac{u_{n+1}}{u_{n}}=\frac{3^{\frac{n+1}{2}+1}}{3^{\frac{n}{2}+1}}=\sqrt{3}=const ko tùy theo n. Vậy sản phẩm số (Un) là 1 trong những cung cấp số nhân với số hạng đầu u_{1}=3\sqrt{3} và công bội là q=\sqrt{3}

  2. Dãy số: u2, u4, u6,..., u20 lập trở nên một cung cấp số nhân với số hạng đầu là u= 9, q = 3 

\Rightarrow S=u_{2}+u_{4}+u_{6}...+u_{20}=u_{2}\frac{1-3^{10}}{1-3}=\frac{9}{2}(3^{10}-1)

4.5. Dạng 5: Tìm CSN

Phương pháp:

Xác lăm le những bộ phận cấu trúc nên một cung cấp số nhân như: số hạng đầu U1, công bội q tiếp sau đó suy đi ra được công thức mang đến số hạng tổng quát tháo .

Ví dụ 1: CSN (un) như sau, tìm hiểu u1 khi:

u_{n} = \frac{2}{3^{n - 1}}

Mà u_{n} = \frac{2}{6561} \Rightarrow 3^{n - 1} = 6561 \Rightarrow n = 9

Lời giải: 

\left\{\begin{matrix} u_{1}(1 + q^{4}) = \frac{82}{11}\\ u_{1}(1 + q + q^{2} + q^{3} + q^{4}) = 11 \end{matrix}\right.

\Leftrightarrow \left\{\begin{matrix} u_{1}q(1 + q + q^{2}) = \frac{32}{11}\\ u_{1}(1 + q^{4}) = \frac{82}{11} \end{matrix}\right.

\Rightarrow \frac{1 + q^{4}}{q(1 + q + q^{2})} = \frac{82}{39}

\Leftrightarrow Ta sở hữu q = 3 hoặc q = \frac{1}{3}

Khi cơ đợt lượt u_{1} = \frac{81}{11} hoặc u_{1} = \frac{1}{11}

Xem thêm: tải nhạc từ youtube sang zing mp3

Ví dụ 2: Dãy số nào là là cung cấp số nhân: 

  1. 1;0,2;0,04;0,008;...

  2. 1,22,222,2222,...

  3. X,2x,3x,4x,...

  4. 2,3,5,7,...

Lời giải: 

Xét đáp án A tớ có: 

u= 1, u= u. 0,2, u= u. (0,2)2, u= u. (0,2)3

Sử dụng cách thức quy hấp thụ toán học tập tớ minh chứng được u= (0,2)n

Khi cơ \frac{u_{n+1}}{u{n}}=\frac{(0,2)^{n+1}}{0,2}=0,2 ko đổi

Vậy sản phẩm số là cung cấp số nhân sở hữu công bội q = 0,2

Ví dụ 3: Tìm cung cấp số nhân sở hữu sáu số hạng, hiểu được tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.

Lời giải: 

Gọi cung cấp số nhân (un) cần thiết tìm hiểu sở hữu công bội q, số hạng trước tiên un.

Ta có: s_{5} = \frac{u_{1} . (1-q)}{1-q}

s5' = u2 + u3 + u4 + u5 + u6

= u1q + u2q + u3q + u4q + u5q

= q . (u+ u+ u+ u+ u5)

= q . S5

Mà S= 31; S5' = 62

\Rightarrow q=2

u_{1}=\frac{s_{5}.(1-q)}{1-q^{5}}=1

Vậy cung cấp số nhân (un) là 1;2;4;8;16;32

Nắm đầy đủ kỹ năng và kiến thức và cách thức giải từng dạng bài bác tập dượt Toán trung học phổ thông với cỗ bí mật độc quyền của VUIHOC ngay!!!

5. Cấp số nhân lùi vô hạn

5.1. Định nghĩa

Nếu cung cấp số nhân (un) sở hữu công bội q thỏa mãn nhu cầu -1 < q <1 thì cung cấp số nhân được gọi là lùi vô hạn.

S= u1(1 - qn)(1 - q) = u1(q- 1)(q - 1)

 Trong cơ sn là tổng n số hạng trước tiên của cung cấp số nhân (un)

Ví dụ: \frac{1}{3},\frac{1}{9},\frac{1}{27},\frac{1}{81},\frac{1}{243} là một cung cấp số nhân lùi vô hạn q=\frac{1}{3}

5.2. Bài toán tổng của cung cấp số nhân lùi hạn

Đề bài bác mang đến cung cấp số nhân lùi vô hạn (công bội q), vậy tớ sở hữu tổng của cung cấp số nhân lùi vô hạn S bằng: $S=\frac{u_{1}}{1-q}$

Ví dụ minh họa 

Ví dụ 1: Tính tổng 

S=1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+...

Lời giải:

Đây là tổng của cung cấp số nhân lùi vô hạn với u_{1}=1, q=\frac{-1}{3} nên 

S=\frac{1}{1+\frac{1}{3}}=\frac{1}{\frac{4}{3}}=\frac{3}{4}

Ví dụ 2: Biểu trình diễn số thập phân vô hạn tuần trả 0,777… bên dưới dạng số

Lời giải: 

Ta có: 

0,777...= 0,7+0,07+0,007+...=\frac{7}{10}+\frac{7}{10^{2}}+\frac{7}{10^{3}}+...=\frac{\frac{7}{10}}{1-\frac{7}{10}}=\frac{7}{9}

Vậy 0,777...=\frac{7}{9}

Ví dụ 3: Tổng của một cung cấp số nhân lùi vô hạn là \frac{5}{3} tổng tía số hạng trước tiên của sản phẩm số là \frac{39}{25}. Xác lăm le (u1), q của cung cấp số đó?

Lời giải: 

Giải câu hỏi vận dụng công thức cung cấp số nhân

6. Một số bài bác tập dượt cung cấp số nhân và cách thức giải chi tiết

Câu 1: Cho cung cấp số nhân un sở hữu công bội q

a) sành u= 2, u6 = 486. Tìm q

b) sành q= \frac{2}{3}, u_{4} = \frac{8}{21}. Tính u1

c) sành u1 = 3, q = -2. Xác lăm le số 192 là số hạng loại bao nhiêu nhập cung cấp số nhân?

Lời giải: 

Áp dụng công thức un = u1.qn-1

a) Theo công thức bên trên tớ có: u6 = u1.q5 \Rightarrow q^{5} = \frac{u_{6}}{u_{1}} = \frac{486}{2} = 243 \Rightarrow q = 3

b) Theo công thức tớ có: u4 = u1.q3 \Rightarrow u_{1} = \frac{u_{4}}{q^{3}} = \frac{8}{21} . (\frac{3}{2})^{2} = \frac{9}{7}

c) Theo công thức tớ có: 12 = 3.(-2)^{n - 1} \Rightarrow (-2)^{n - 1} = 64 \Rightarrow n - 1 = 6 \Rightarrow n = 7

Vậy số 192 là số hạng loại 7

Câu 2: Tìm những số hạng của cung cấp số nhân (un) biết cung cấp số nhân bao gồm sở hữu 5 số hạng và:

a) TH1: u= 3 , u= 27

b) TH2: u– u2 = 25 ,  u3 – u1 = 50

Lời giải: 

a) Theo công thức un = u1.qn - 1 ta sở hữu theo thứ tự những số hạng u3 và u5 được tính như sau:

u3 = u1.q2 \Rightarrow 3 = u1.q2 (1)

u5 = u1.q4 \Rightarrow 27 = u1.q4 (2)

Từ (1) và (2) tớ hoàn toàn có thể suy đi ra được

q^{2} = \frac{u_{1}.q^{4}}{u_{1}.q^{2}} = 9 \Rightarrow q = \pm 3

Xét ngôi trường hợp:

Với q = 3 tớ sở hữu u_{1} = \frac{1}{3} ta sở hữu cung cấp số nhân theo thứ tự là: \frac{1}{3}; 1; 3; 9; 27

Với q = -3 tớ sở hữu u_{1} = -\frac{1}{3} ta sở hữu cung cấp số nhân theo thứ tự là: \frac{1}{3}; -1; 3; -9; 27​​​​​​​​​​​​​​

b) Theo đề bài bác đi ra tớ có:

\left\{\begin{matrix} u_{4} - u_{2} = 25\\ u_{3} - u_{1} = 50 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u_{1}q^{3} - u_{1}q = 25\\ u_{1}q^{2} - u_{1} = 50 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} u_{1}q(q^{2} - 1) = 25 (1)\\ u_{1}(q^{2} - 1) = 50 (2) \end{matrix}\right.

Thay (2) nhập phương trình (1) tớ sở hữu 50.q = 25 \Leftrightarrow q = \frac{1}{2}

\Rightarrow u_{1} = -\frac{200}{3}

Vậy tớ sở hữu cung cấp số nhân như sau:

-\frac{200}{3}; -\frac{100}{3}; -\frac{50}{3}; -\frac{25}{3}; -\frac{25}{6}

Ví dụ 3: Tìm cung cấp số nhân sở hữu sáu số hạng, hiểu được tổng của 5 số hạng đầu là 31 và tổng của 5 số hạng sau là 62

Lời giải:

Tổng của 5 số hạng đầu vị 31, kể từ cơ tớ suy ra:

u1 + u2 + u3 + u4 + u5 = 31

\Rightarrow u1q + u2q + u3q + u4q + u5q = 31q

\Rightarrow u2 + u3 + u4 + u5 + u6 = 31q (1)

mà tổng của 5 số hạng sau  vị 62 kể từ thách suy ra

u2 + u3 + u4 + u5 + u6 = 31q = 62

vậy q = 2

Vì S5 = 31 = \frac{u_{1}(1 - 2^{5})}{1 - 2} \Rightarrow u_{1} = 1

Vậy tớ sở hữu cung cấp số nhân theo gót đề bài bác là: 1, 2, 4, 8, 16, 32

Ví dụ 4: Tỉ lệ tăng số lượng dân sinh của tỉnh x là một,4%. sành rằng bên trên thời khắc tham khảo số dân của tỉnh lúc bấy giờ là một,8 triệu con người, chất vấn với nấc tăng lộc như thế thì sau 5 năm, 10 năm số nữa số lượng dân sinh của tỉnh cơ là?

Lời giải:

Gọi số dân của tỉnh cơ thời điểm hiện tại là N 

Sau 1 năm số lượng dân sinh tăng là một,4%N 

Vậy năm tiếp theo, số dân của tỉnh này là n + 1,4%N = 101,4%N 

Số dân tỉnh cơ sau hàng năm lập trở nên một cung cấp số nhân như sau N ; (101,4/100)N ; (101,4/100)2N ; … 

Giả sử N=1,8 triệu con người thì sau 5 năm số dân của tỉnh là: (101,4/100)5. 1,8 = 1,9 (triệu dân) 

Và sau 10 năm được xem là (101,4/100)10. 1,8 = 2,1 (triệu dân)

Ví dụ 5: Đề bài bác mang đến un sở hữu những số hạng 0, tìm  u1 biết:

u_{n}=\frac{2}{3^{n-1}}. Mà u_{n}=\frac{2}{6561} \Rightarrow 3^{n-1} = 6561 \Rightarrow n=9

Lời giải: 

Giải câu hỏi vận dụng công thức cung cấp số nhân

Tham khảo ngay lập tức một số trong những dạng bài bác tập dượt thương gặp gỡ về cung cấp số nhân được những thầy cô VUIHOC tổng hợp

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng trong suốt lộ trình học tập kể từ tổn thất gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo gót sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học tới trường lại cho tới lúc nào hiểu bài bác thì thôi

⭐ Rèn tips tricks canh ty tăng cường thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không tính tiền ngay!!

Xem thêm: bài tập về từ đồng nghĩa

Trên đấy là toàn cỗ lý thuyết và những dạng công thức cung cấp số nhân. Mong rằng với nội dung bài viết này, những em học viên hoàn toàn có thể giải những bài bác tập dượt kể từ cơ bạn dạng cho tới nâng lên thật thành thục. Các em truy vấn Vuihoc.vn và ĐK khóa đào tạo nhằm học tập và ôn tập dượt kỹ năng và kiến thức Toán 11 phục vụ ôn thi đua trung học phổ thông QG ngay lập tức kể từ thời điểm ngày hôm nay nhé!

>> Xem thêm:

  • Tổng ăn ý những công thức cung cấp số nằm trong và cung cấp số nhân & bài bác tập
  • Cấp số nằm trong là gì? Công thức cung cấp số nằm trong và bài bác tập
  • Xác suất của trở thành cố
  • Giới hạn của sản phẩm số